The Primordial Black Hole Dark Matter - LISA Serendipity

Zel’'dovich, Novikov '67

e PBH and PBH-DM long standing idea
Hawking '71; Carr '75; Chapline '75
e Recent interest due to lack of detection of particle Bird etal’l6
Clesse, Garcia-Bellido '16;
candidates, and LIGO / VIRGO events Sasaki et al '16
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A Formed by the collapse of an overdense region

at horizon re-entry. 1:1 relation Mpgy < A
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e Enhanced op — GW. Unavoidable, 1 1012 M,

nonlinear gravity. Parametrically



e Requires suitable mechanism to increase selected modes during inflation

o Ex: in axion inflation, ¢ (t) — 6A through ¢FF, with amplitude o exp ()

Then §A+6A — §p very sensitive to ¢.

Garcia-Bellido,
0.1L MP, Unal '16
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e Possible generation within standard model, by Higgs instability; quantum

fluctuations push H to region where X\ < O; stable Vy (H) at reheating

Espinosa, Racco, Riotto '17

e Near-inflection point from RGE running in Higgs inflation

Ezquiaga,Garcia-Bellido, Morales '17

e Many works exploting P o *. References in Garcia-Bellido '17
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1) during inflation, by the same source that produced dp

GW produced
< 2) by dp at horizon re-entry after inflation

For instance, in axion inflation,

Unal '17
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e Let us focus on mechanism (2) which is model independent
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Actual bump in several models P = Asexp 5.2 In o
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Dirac delta approximation P = A; k.o (k — k)
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Beside the scale-dependence, how

can we distinguish them from — Pulh) = A~ ) 5
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Non-Gaussianity of the SGWB (to be quantified!)
»

o Z incoherent astrophysical sources — Gaussian background

Measure of large scale coherence, ex. from inflation or long cosmic strings

e Simplest quantity <h3> that vanishes for a Gaussian background
M? .
Y Current efforts on (signal®) — strain o Qaw (f) , pew = Tp (hijhi)

Y Analogously <signal3> — <h3>

Power spectrum  (hy (k) hy (F')) = ZAW(;) Sy 6@ (F 4 F)

Bispectrum <hA1 (El) hx, (Eg) hxs (E3)> = By, aons (K1, k2, k3) 6 (El + ko + Es)

¥ P “diagonal” in momentum and helicity. Two functions of k

¥ Scale and shape (k2/k1,ks3/k1) dependence in B; mixing of # helicities

Highly informative, since = models predict = B
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X sxyz have correlated noise

/ \ Noise-orthogonal combinations Adams, Cornish '10
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- Two-point response function well studied
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The bispectrum of sourced GW Bartolo. De Luca. Franciolini.
MP, Racco, Riotto '18

Peaked at equilateral configurations,

with k1 = ko = k3 ~ kpeak,g
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Can we see this 7

Construct an estimator ]:"EZ/dFl AFy dFsWYR(Fy, Fy, F3) 5;(F)) 5;(F) 31(F3)
ijk

Test of non — Gaussianity :
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Typical measured bispectrum in one realization
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of Gaussian background (signal > noise)

Larger significance when peak bispectrum
= peak response function

Expect significant evidence
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if PBH - DM !



