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Figure 6. Future femtolensing sensitivity to primordial black holes compared to other probes. In
particular, we compare our projected limits (blue dashed contours) to limits based on extragalactic
background photons (EG�) from PBH evaporation [13], from the non-destruction of white dwarfs
(WD) [18], from microlensing searches by Subaru HSC [4], Kepler [57], MACHO [1], EROS [2], and
OGLE [3], from the dynamics of ultra-faint dwarf galaxies [58], and from CMB distortions due to
accretion onto PBHs [59]. (Stronger CMB limits are obtained if more aggressive assumptions on
accretion by PBHs are adopted [60].) The Subaru HSC limits are cut off at M ⇠ 10�11

M� because
below that mass, the geometric optics approximation employed in ref. [4] is not valid. We also do
not include neutron star limits [15] because of their dependence on controversial assumptions about
the DM density in globular clusters. We have taken the limits shown here from the compilation in
ref. [36]. In computing our projected limits, we have assumed the redshift of all GRBs in the sample
to be zS = 1, we have used the BAND model for the GRB spectrum, and we have assumed a 5%
systematic uncertainty, uncorrelated between energy bins.

is not true that photons travel from the source to the detector along one of just two discrete
paths. In fact, when the time delay becomes comparable to the inverse photon frequency
(which for point-like lenses is equivalent to the photon wave length becoming comparable
to the Schwarzschild radius of the lens), wave optics effects become non-negligible. It is
then necessary to integrate the photon amplitude over the whole lens plane. This leads to
O(1) corrections to the interference pattern at the lower end of the photon energy spectrum.
Second, while the approximation of a point-like lens works for primordial black holes, it is
not satisfied for ultra-compact mini-halos, and even less so for NFW-like structures. We
have therefore computed femtolensing effects for generic power-law density profiles, and have
explicitly shown numerical results for the self-similar infall profile with ⇢(r) / r

�9/4.
The most important correction in femtolensing of GRBs is coming from the non-negligible

size aS of the GRB source itself. In fact, we have argued that a GRB could only be treated
as point-like for the purpose of femtolensing if the photon emission region was smaller than
aS ⇠ 108 cm. And while estimates for the size of the emission region can vary by a few
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Bird et al ’16; Clesse, Garćıa-Bellido ’16; Sasaki et al ’16

Katz, Kopp, Sibiryakov, Xue ’18

Cut due to source (GRBs) finite size,

and wave e↵ect (RPBH < ��)

NS capture limit not shown, as /

uncertain ⇢dm in globular clusters

• Formed by the collapse of an overdense region

at horizon re-entry. 1:1 relation MPBH $ �

• Enhanced �⇢ ! h (GW). Unavoidable, nonlinear

Einstein gravity. Parametrically �h ⇠ �

Primordial Black Hole dark matter

After GW150914, revival of PBH - dm association
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Bird et al ’16; Clesse, J. Garćıa-Bellido ’16; Sasaki et al ’16

Katz, Kopp, Sibiryakov, Xue ’18

Cut due to source (GRBs) finite size,

and wave e↵ect (RPBH < ��)

NS capture limit not shown, as /

uncertain ⇢dm in globular clusters

• Formed by the collapse of an overdense region

at horizon re-entry. 1:1 relation MPBH $ �

• Enhanced �⇢ ! h (GW). Unavoidable, nonlinear

Einstein gravity. Parametrically �h ⇠ �

The Primordial Black Hole Dark Matter - LISA Serendipity

• PBH and PBH-DM long standing idea

• Recent interest due to lack of detection of particle

candidates, and LIGO / VIRGO events
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• Irrespectively of the mechanism,

bump in �⇢ sources peaked GW

Beside the scale-dependence, how

can we distinguish them from

an astrophysical background ?

GW produced

1) during inflation, by the same source that produced �⇢

2) by �⇢ at horizon re-entry after inflation

GW produced

1) during inflation, by the same source that produced �⇢

2) by �⇢ at horizon re-entry after inflation

GW produced

1) during inflation, by the same source that produced �⇢

2) by �⇢ at horizon re-entry after inflation

GW produced

1) during inflation, by the same source that produced �⇢

2) by �⇢ at horizon re-entry after inflation

For instance, in axion inflation,
A

A

hp
,

A

A

A

A

⇣

⇣

hi

Figure 4. Primordial and induced GW in the rolling axion bump model.

The two expressions (4.1) and (4.2) are diagrammatically shown in Figure 3.
Adding up the two GW polarizations (the induced GW is not polarized, since it is

sourced by the scalar ⇣), the total explicit expression corresponding to (4.2) is [21]
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where p is the loop momentum, z is the cosine of the angle between k and p, and where

FT (u, v) = 2T (u)T (v) + T̃ (u)T̃ (v) , (4.4)
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Let us now turn our attention to the rolling axion bump model. In this case, both
primordial and induced GW are present. Figure 4 shows how the GW are produced from the
vector field A amplified by the rolling axion. The primordial GW are produced by the vector
fields during inflation. The autocorrelation hhphpi is of the form (3.4). This correlator was
computed in [16, 49], and it is given by the first diagram of Figure 5.

The induced GWB is produced during the radiation dominated era (mostly at horizon
re-entry) by the scalar perturbations that were sourced by the vector fields during inflation.
The induced GW signal in this model was never computed, and it is one of the original
results of the present work. Due to the fact that both hp and hi originate from the vector field
perturbations, the total power spectrum h(hp + hi)

2i contains also a mixed-term contribution,
given by the second and third diagram of Figure 6.

The presence of hp therefore provides additional contributions to the GW power, that
are typically disregarded in works of GW from PBH. Disregarding this signal may not always
be a proper assumption, since the production of PBH required a mechanism that enhances
the scalar perturbations during inflation, and this mechanism can in principle enhance also
the primordial GW. The relevance of hp over hi is particularly important in the case in which
the scalar perturbations obey Non-Gaussian statistics, as we will show below. The reason for
this is that PBH bounds constrain the scalar power much more in the case of Non-Gaussian
vs. Gaussian statistics (see Figure 2). This then limits the amount of induced GW which are
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FIG. 2: Comparison of the estimated sensitivity for LISA [34] (the proposed design (4y, 2.5 Gm of length, 6 links) is expected
to yield a sensitivity in between the ones dubbed C1 and C2 in Ref. [35]) with the GW abundance generated at second-orderby
the formation mechanism of PBHs for both power spectra in Eqs. (2.13) and (2.15), where we used the following values for the
parameters: As = 0.033, A⇣ = 0.044 and �⇣ = 0.5.

A. The case of a Dirac delta power spectrum

Inserting Eq. (2.13) into Eq. (3.1), we obtain
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As studied in Ref. [21], the bispectrum depends on the orientation of the three vectors ~ki, as well as their magnitude.
For definiteness, we fix
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We then use spherical coordinates for the integration vector ~p1 = p1 (cos ✓, sin ✓ cos�, sin ✓ sin�), with cos ✓ ⌘ ⇠. We
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Figure 3. Diagrammatic expression for the GW induced by scalar perturbations in the Gaussian
bump model.

4 Primordial vs. Induced Gravitational Waves

We identify three distinct populations of GW associated with PBH.6

In order of their formation, they are:

1. The GW produced during inflation by the same mechanism that produces the enhanced
scalar perturbations that later become PBH at reentry. We refer to this population as
the “primordial GW”, and we denote it as hp.7

2. The GW sourced by the enhanced scalar perturbations. This gravitational production is
maximized when the scalar modes re-enter the horizon during the radiation dominated
era. We refer to this population as the “induced GW”, and we denote it as hi.

3. The GW produced by the merging of PBH binaries, since formation until today [23, 24].

In this work we study the first two populations, in the context of the Gaussian bump
model and of the rolling axion bump model introduced in the previous section.

The Gaussian bump model assumes that no significant primordial GW are produced.
The induced GW are produced by the scalar curvature modes through standard nonlinear
gravitational interactions, through a process diagrammatically shown in Figure 3. The gravi-
tational interaction is schematically of the type h⇣

2, where h is a tensor mode of the metric
(the GW) and ⇣ is the scalar curvature (in this schematic discussion we do not indicate the
tensorial indices, nor the spatial derivatives acting on ⇣, which characterize the interaction).
The tensor mode sourced by this interaction obeys a di↵erential equation that can be solved
through a Green function, G (⌘, ⌘

0), schematically described as

hi (⌘) =

Z
⌘

d⌘
0
G
�
⌘, ⌘

0�
⇣
�
⌘
0�

⇣
�
⌘
0�

, (4.1)

where ⌘ is (conformal) time, and where the right hand side contains also a convolution in
momenta. This leads to a contribution to the GW power spectrum, schematically as

hhi (⌘) hi (⌘)i =

Z
⌘

d⌘
0
Z

⌘

d⌘
00

G
�
⌘, ⌘

0�
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�
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00� ⌦
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⌘
0�

⇣
�
⌘
00�↵ ⌦

⇣
�
⌘
0�

⇣
�
⌘
00�↵

. (4.2)

6In addition to the signals considered here, there is also the stochastic background from the non-spherical
collapse of PBH [1]. This background can be estimated as ⌦nsc, 0 = E ·� ·⌦rad,0, where E indicates the e�ciency
of converting the horizon mass during formation of PBH to GW and � is the fraction of causal domains that
collapse into a PBH. Using the bound � <

⇠ 2 ⇥ 10�8, from Figure 1, we can estimate ⌦nsc, 0 h
2 <
⇠ 10�12

· E ,
which is much smaller than the signals studied here, and thus is ignored.

7These are not the vacuum tensor fluctuations produced during quasi-de-Sitter inflation, which are negli-
gible on these scales.
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Garćıa-Bellido, MP, Unal ’17

• Let us focus on mechanism (2) which is model independent

Actual bump in several models P⇣ = A⇣ exp
h
�

1

2�2
ln2

⇣
k

kc

⌘i

Dirac delta approximation P⇣ = A⇣ k⇤ � (k � k⇤)
m



Non-Gaussianity of the SGWB

• Irrespectively of the mechanism,

bump in �⇢ sources peaked GW

Beside the scale-dependence, how

can we distinguish them from

an astrophysical background ?

•
P

incoherent astrophysical sources ! Gaussian background

• Irrespectively of the mechanism,

bump in �⇢ sources peaked GW

Beside the scale-dependence, how

can we distinguish them from

an astrophysical background ?

•
P

incoherent astrophysical sources ! Gaussian background

(to be quantified!)

• Irrespectively of the mechanism,

bump in �⇢ sources peaked GW

Beside the scale-dependence, how

can we distinguish them from

an astrophysical background ?

•
P

incoherent astrophysical sources ! Gaussian background

(to be quantified!)

Measure of large scale coherence, ex. from inflation or long cosmic strings

• Irrespectively of the mechanism,

bump in �⇢ sources peaked GW

Beside the scale-dependence, how

can we distinguish them from

an astrophysical background ?

•
P

incoherent astrophysical sources ! Gaussian background

(to be quantified!)

Measure of large scale coherence, ex. from inflation or long cosmic strings

• Simplest quantity
⌦
h
3
↵
, that vanishes for a Gaussian background

Non-Gaussianity of the SGWB

• Here, by non-Gaussianity, we do NOT mean popcorn signal

• Correlation in space; simplest quantity
⌦
h
3
↵
, that vanishes for a

Gaussian background.

• Superposition of incoherent sources ! Gaussian background. Measure
of

large-scale coherence, such as from inflaton, or long cosmic strings

Current e↵orts on
⌦
signal2

↵
! strain S (f) =

3H2
0

4⇡2

1

f3
⌦GW (f)

This measures the two point correlation function,

⌦GW (f) =
1

3H2
0M

2
p

@⇢GW

@ ln k
, ⇢GW =

M
2
p

4

⌦
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FIG. 3: Dirac delta power spectrum. Left: Plot of the rescaled bispectrum in the equilateral configuration. The bispectrum
vanishes in the outmost right part of the plot, namely for k >

p
3k?. Right: Contour plot of the rescaled bispectrum for the

isosceles case. The bispectrum vanishes in the white region.

shape of the power spectrum compared to the Dirac delta one results in a lower peak in the equilateral configuration,
making the two peaks with opposite sign in the LLL configuration comparable. Moreover, the width increase causes
the bispectrum to be peaked at lower values of the momenta compared to k?. One has to keep in mind that, for sake of
generality, in this case we assumed a power spectrum centred at a di↵erent momentum, namely ⇠ 3k?/2. As we shall
see this change of the pivot scale, even though it does not introduce radical changes for what concern the PBH and
the GWs abundances, can decrease the significance of the detection at LISA. Finally, we note that the polarization
configurations LLR=RRL (and their permutations) are suppressed with respect to the LLL=RRR ones.

In the right panel of Fig. 4 one can see the behaviour of the rescaled three-point function of GWs in the isosceles
configuration (k1 = k2). Two important di↵erences with respect to the Dirac case are its more regular profile and the
absence of a cut-o↵ present in the former case due to the Heaviside ✓-function.

C. The shape of the bispectrum

We may define the shape for the bispectrum as

S�1�2�3

h (~k1,~k2,~k3) = k21k
2
2k

2
3

⌦
h�1

(⌘,~k1)h�2
(⌘,~k2)h�3

(⌘,~k3)
↵0

p
Ph(⌘, k1)Ph(⌘, k2)Ph(⌘, k3)

. (3.14)

The shape, as defined in Eq. (3.14), is shown in Fig. 5 (right). Our findings show that the bispectrum of GWs has
its maximum at the equilateral configuration, k1 ' k2 ' k3. This comes about because the source of the GWs is
composed by gradients of the curvature perturbations when the latter re-enters the horizon. The measurement of this
shape would by itself provide a consistency relation between the bispectrum and the power spectrum of GWs, which
might help disentangling the signal from other possible sources.
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(the actual distance slightly varies during the orbit; this e↵ect is disregarded in our computations). Laser light is sent
from each satellite to the other two, so that each vertex acts as a time delay interferometer. The three measurements
are not noise-orthogonal, as any two interferometers share one arm. The noise covariance matrix can however be
diagonalized to provide noise-orthogonal combinations. We consider the three linear combinations A,E,T introduced
in Ref. [41]. These combinations are also signal-orthogonal; moreover, in the case of equal arms the combination T is
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shape of the power spectrum compared to the Dirac delta one results in a lower peak in the equilateral configuration,
making the two peaks with opposite sign in the LLL configuration comparable. Moreover, the width increase causes
the bispectrum to be peaked at lower values of the momenta compared to k?. One has to keep in mind that, for sake of
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FIG. 5: Shape of the three-point function. Left: Dirac delta case. Right: Gaussian case.

noise) in the O channel (where O is either A or E). The expectation value for the three-point function of the signal
can formally be written as [38]

h⌃O⌃O0⌃O00i =
X

�1,�2,�3

Z
df1df2df3 f1f2f3 B�1�2�3

⇣
~f1, ~f2, ~f3

⌘
ROO0O00

�1�2�3

⇣
~f1, ~f2, ~f3

⌘
. (4.1)

In this expression, �i and ~fi denote, respectively, the polarization and frequency (more precisely, the frequency vector,

related to the wave vector by ~f = ~k/2⇡) of the GWs involved in the correlator; B�i(~fi) is the GW bispectrum, and
R the three-point response function. As the measurement is a time delay, ⌃O has the dimension of an inverse mass.
The bispectrum has mass dimension �6. With these conventions, the response function is therefore dimensionless.
Due to the planar nature of the instrument [40], the response function is invariant under parity, namely RRRR =
RLLL, RRRL = RLLR (and so on). Moreover, due to the highly symmetric configuration, only the EEE and
AAE (and permutations) correlations of the channels are nonvanishing, and they are one the opposite of the other
REEE = �RAAE [38].

All the relevant formulae for the computation of R can be found in Section 3 of [38], so we do not copy them
here. In Figure 6 we show the two response functions REEE

LLL (red line) and REEE
LLR (green line) in the equilateral case

f1 = f2 = f3. We note that the instrument is significantly more sensitive to equal-helicity bispectrum LLL (and,
equivalently, RRR). Moreover, we see that in the outmost left range shown in Figure 6 (left panel), the response
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unequal-time GW bispectrum. The times ⌘i of the three measurements can be decomposed as a common cosmological
time ⌘cosm plus two time di↵erences between the measurements. Therefore

⌘1 � ⌘2 ⌘ �2, ⌘1 � ⌘3 ⌘ �3, ⌘1 + ⌘2 + ⌘3 ⌘ 3⌘cosm. (5.3)

Only the time di↵erences are relevant for the computation. Physically, the experimental output taken in the 4�10 years
of operation cannot depend on the age of the universe (apart from the cosmological rescaling of the GW amplitude
that has already been taken into account in Eq. (5.1)). Mathematically, phases proportional to ⌘cosm in the Fourier
transform are fast oscillating, and average to zero. For this reason, we simply set ⌘cosm = 0 in the phases of eq. (5.1),
so that

B�i

⇣
⌘i, ~fi

⌘
⇠= N

h
I⇤1 ei

2⇡
3
f1(�2+�3) + c.c.

i h
I⇤2 ei

2⇡
3
f2(�3�2�2) + c.c.

i h
I⇤3 ei

2⇡
3
f3(�2�2�3) + c.c.

i
. (5.4)

where c.c. denotes complex conjugation. The Fourier transform of this expression reads

B̃�i

⇣
Fi, fi, f̂i

⌘
⌘

Z
d⌘1d⌘2d⌘3 e�2⇡i(F1⌘1+F2⌘2+F3⌘3) B�i

⇣
⌘i, ~fi

⌘

= � (F1 + F2 + F3)

Z
d�2

Z
d�3e

2⇡i[F2�2+F3�3] B�i

⇣
�2, �3, ~fi

⌘
, (5.5)

where the emergence of the overall Dirac delta is due to the fact that (5.4) only depends on the di↵erence between
the times. This expresses the statistical time invariance of the bispectrum, when measured over times much smaller
than the cosmological time. As we will see, this ensures that the ratio that we compute in the next subsection grows
as the square root of the time T over which the measurement is taken.

From the Fourier transform of the bispectrum we can compute the expectation value for the three-point function of
the signal (in frequency space) measured in the Oi LISA output channels [38]

D
⌃̃O1

(F1) ⌃̃O2
(F2) ⌃̃O3

(F3)
E

= � (F1 + F2 + F3)L
3

Z
d ln f1

Z
d ln f2

Z
d ln f3 f

2
1 f

2
2 f

2
3 B̃�i

⇣
Fi, fi, f̂i

⌘
RO1O2O3

�1�2�3

⇣
~f1, ~f2, ~f3

⌘

⌘ � (F1 + F2 + F3)S
O1O2O3

s (F1, F2, F3) . (5.6)

With a completely analogous computation, the expectation value of the two-point function of the unequal time signal
is (in frequency space)

D
⌃̃O1

(F1) ⌃̃O2
(F2)

E
= � (F1 + F2) �O1O2

· L2

2|F1|
X

�

P� (|F1|) RO1O1,� (|F1|) , (5.7)

where ROO,� is the two-point response function (see, e.g., [39] and the discussion in [38]).

B. Test of non-Gaussianity

We are now in position to construct the estimator

F̂ ⌘
X

ijk

Z
dF1 dF2 dF3W

ijk(F1, F2, F3) s̃i(F1) s̃j(F2) s̃k(F3), (5.8)

where s̃ is the Fourier transform of the measurement, given by the sum of the GW-induced signal ⌃̃ plus noise ñ. The
noise is assumed to be Gaussian3 and uncorrelated to the signal. The LISA output channels are constructed so to be
noise-orthogonal [39], and the power spectrum in the A and E channels reads

hni (F1) nj (F2)i = �ij (2L)2 Pn (|F1|) � (F1 + F2) , {i, j} = {A, E} , (5.9)

3
As discussed in Ref. [38], this is the case for a large range of frequencies centered around 1mHz in the LISA Pathfinder mission.

Moreover, this is taken as a working assumption in the LISA Data Challenge.
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FIG. 8: Expected TNG value obtained from the LISA mission after its nominal duration (4 years with 75% e�ciency), for
sourcing scalar perturbations with a Dirac delta function power spectrum at the scale f?, under the assumption that the PBH
resulting from this bump are the dark matter of the universe. The blue band in the Figure represents the available window for
the PBH-dark matter association.

Clearly, this is just an approximation, rather than an exact evaluation of (5.16), that we perform exploiting the
peaked nature of the integrand.

In this way, the ✓-functions drop out of Eq. (5.16), and one is left with products of I and N that precisely form the
bispectrum after average over the fast oscillating phases (cf. Eq. (3.13)). Therefore we finally obtain

TNG '
(

2T

3

Z +1

�1
dF2

Z +1

�1
dF3

81L6

Ps (|F2 + F3|) Ps (|F2|)Ps (|F3|)
· 1

64

�����

Z 1

�1
df1 |f1| |f1 + 2F2 + F3| |f1 + F2 + 2F3|

X

�i

B�i (|f1|, |f1 + 2F2 + F3|, |f1 + F2 + 2F3|) REEE
�i

(|f1|, |f1 + 2F2 + F3|, |f1 + F2 + 2F3|)

�����

2)1/2

.

(5.20)

A direct inspection of the integrand shows that it is highly peaked at the peaks of the bispectrum, given by Eq.
(5.19). In this region the response function has a considerably milder dependence on the frequencies, so we can simply
evaluate it setting all its arguments to fpk = 2/

p
3f?. Moreover, we only include the equal helicity RRR and LLL

cases in the sum, due to the strong hierarchy between the equal and unequal helicity response functions (see Figure
6). Both terms give the same contribution, since the response function and the bispectrum are invariant under parity.

We evaluated Eq. (5.20) for T = 3 years, and for sourcing scalar perturbations with both a Dirac delta power
spectrum and a Gaussian power spectrum. The former choice leads to the numerical values of TNG shown in Figure 8.
In the regime of strong signal considered here (cf. Eq. (2)) the power spectrum Ps is highly dominated by the signal
part, and it is proportional to the second power of the scalar amplitude As. Therefore the dependence on As cancels

out in the ratio Bs/P
3/2
s , and the value of TNG is essentially insensitive to As

7. Therefore, TNG only depends on
the value of f?, as shown in the figure. We see from the figure that the LISA measurement allows to test with high
accuracy the non-Gaussianity of the GW background formed in this scenario. It is natural to ask how much the large
TNG values shown in the Figure depend on the assumption of a delta power spectrum of the scalar perturbations. For
this reason, we also evaluated the expression (5.20) for a Gaussian bump (2.15) of finite width, with an amplitude still
chosen so to produce a PBH abundance identical to that of the present dark matter. We vary the central position of
the bump, as well as its width. As a measure of the width, we define the ratio Q ⌘ fpk,⇣/�f , where we define as �f
the di↵erence between the frequency of the two points (one at the right and one at the left of the peak frequency fpk,⇣)
where the scalar power spectrum evaluates to 1/2 times the value at the peak. A large (small) Q-value corresponds

7
The noise dominates over the signal at very small and very large frequency, regulating the expression (5.20). These regions give a

negligible contribution to the integral, so that, strictly speaking, the value of TNG has a non-vanishing but negligible dependence on As.
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